
Journal of Sound and <ibration (2003) 259(1), 229}232
doi:10.1006/jsvi.2002.5100, available online at http://www.idealibrary.com on
MINIMUM STIFFNESS OF AN INTERNAL ELASTIC SUPPORT TO
MAXIMIZE THE FUNDAMENTAL FREQUENCY OF A VIBRATING

BEAM

C. Y. WANG

Departments of Mathematics and Mechanical Engineering, Michigan State ;niversity, East ¸ansing,
MI 48824, ;.S.A.

(Received 18 December 2001)
1. INTRODUCTION

The fundamental frequency (below which no vibration could occur) can be increased if
a beam has additional internal point supports. If the supports are rigid, Courant and
Hilbert [1] showed that the optimum locations of the supports should be at the nodal
points of a higher vibrationmode, and the fundamental frequency is correspondingly raised.
For elastic supports, Akesson and Olho! [2] demonstrated that the optimum locations are
still the same as the case of the rigid supports, with no decrease in fundamental frequency,
provided the support sti!ness exceeds a certain minimum value. Such minimum support
sti!ness phenomenon also occurs in the buckling of beams [3]. The minimum sti!ness
prediction is very important in the design of beams, since the bracing or support material
can be reduced without any loss of performance.
There exist other literature on the vibration of beams with internal elastic supports (e.g.

references [4}8]), but reference [2] is the only source which discussed the minimum sti!ness.
They used "nite elements to "nd the sti!ness criterion for the cantilever beam. The present
note presents the optimum location and the minimum sti!ness of internal support for
beams with other end conditions. For accuracy, we shall use the exact characteristic
equation to compute the eigenfrequencies.

2. FORMULATION

Let the beam be of length ¸ and x¸ be the distance from the left end. If the transverse
displacement is w (x) cos (�t), the governing equation for vibration of a slender beam is [4]

w����(x)!��w"0, (1)

where ��"(mass per length �) ¸� (frequency ��)/� (#exural rigidity D) is the square of the
normalized frequency. The general solution to equation (1) is a linear combination of
sinh (�x), cosh (�x), sin (�x), cos (�x). The elastic support is at x"b. Let the subscript
I denote the segment 0)x)b and the subscript II denote the segment b)x)1. Thus,
the solution for segment I is

w
�
(x)"C

�
[sinh (�x)!sin (�x)]#C

�
[cosh(�x)!cos (�x)], (2a)
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w
�
(x)"C

�
sinh(�x)#C

�
sin (�x), w

�
(x)"C

�
cosh (�x)#C

�
cos (�x). (2b,c)

w
�
(x)"C

�
[sinh (�x)#sin (�x)]#C

�
[cosh(�x)#cos (�x)] (2d)

for clamped, simply supported, sliding, and free left end conditions respectively. Similarly,
the solution for segment II is

w
��
(x)"C

�
�sinh[�(x!1)]!sin[� (x!1)]�

#C
�
�cosh[� (x!1)]!cos[� (x!1)]�, (3a)

w
��
(x)"C

�
sinh[� (x!1)]#C

�
sin[�(x!1)],

w
��
(x)"C

�
cosh[� (x!1)]#C

�
cos[� (x!1)]. (3b, c)

w
��
(x)"C

�
�sinh[� (x!1)]#sin[� (x!1)]�#C

�
[cosh[� (x!1)]#cos[� (x!1)]�

(3d)

for the above-mentioned four kinds of right end conditions. At the support, the two
segments are matched for displacement, slope, moment and shear:

w
�
(b)"w

��
(b), w�

�
(b)"w�

��
(b), w��

�
(b)"w��

��
(b), (4}6)

w���
�
(b)!�w

�
(b)"w���

��
(b), (7)

where �"(spring constant c) ¸�/D is the normalized sti!ness. Equations (2) and (3) are then
substituted into equations (4)}(7). For non-trivial solutions, exact characteristic equation is
obtained. The frequency parameter � is then solved by a bisection algorithm to any desired
accuracy. In order to "nd the minimum sti!ness, the following scheme is used. First
consider the beam without the support. Form equation (2) and the appropriate boundary
conditions on the right end, obtain the second eigenfrequency, say �*. Using the
corresponding eigenfunction, the single interior nodal location is determined, say at b*.
According to references [1, 2], these are the maximum fundamental frequency and the
optimum location of the interior beam support. The next step is to set b"b* and use the
characteristic equation obtained from equations (2)}(7) to "nd the minimum sti!ness such
that �* becomes the fundamental frequency.

3. RESULTS AND DISCUSSION

We illustrate in more detail the clamped}clamped beam. Using equation (2a) and the
boundary conditions w

�
(1)"w�

�
(1)"0, we "nd that the characteristic equation without an

internal support is

cosh (�) cos (�)!1"0. (8)

The "rst two roots are 4)73004 and 7)85321 and we set �*"7)8532. The eigenfunction is

w
�
"sinh (�*x)!sin (�*x)!

sinh (�*)!sin (�*)
cosh (�*)!cos (�*)

[cosh(�*x)!cos (�*x)]. (9)

By setting equation (9) to zero, a root search gives x"b*"0)5. (In this symmetric
clamped}clamped case, one could have inferred the node is at the midpoint.) Now setting



Figure 1. Variation of the two lowest frequencies with respect to sti!ness for the clamped}clamped case at the
"xed location b*"0)5. The intersection is at �*, �*.

TABLE 1

Optimum location b*, minimum sti+ness �* and the maximum frequency attained �* with
various end conditions. C"clamped, S"simply supported, Sl"sliding, F"free

Ends C}C C}S C}Sl C}F S}S S}Sl S}F Sl}Sl Sl}F

�* 7)8532 7)0686 5)4978 4)6941 2� 3�/2 3)9266 � 2)3650
b* �

�
0)5575 0)7169 0)7834 �

�
�
�

0)7358 �
�

0)5517
�* 1834 1377 619)4 266)9 995)9 402)0 163)6 113)7 33)50
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b"b* and using the characteristic equation obtained from equations (2)}(7), we vary � to
obtain to lowest two frequencies. Figure 1 shows the results. The horizontal line �*
represents a mode independent of the sti!ness. The slanted curve is another mode whose
frequency increases with sti!ness. (In the clamped}clamped case, the two modes can be
identi"ed as symmetric and antisymmetric modes respectively.) The lowest (fundamental)
frequency becomes constant at the intersection of the two curves, at �*"1834 which is the
minimum sti!ness for a fundamental frequency of �*.
Using similar methods, we found the optimum location and the minimum sti!ness for

a variety of end conditions, given in Table 1.
For the clamped}free case, our minimum sti!ness of 266)87 compares well with 226)9

obtained by Akesson and Olho! [2]. Note that there is no free}free case since an interior
support would not improve the frequency of zero due to rigid rotation.
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